014. Comparative Effectiveness and Safety between Non-VKA Oral Anticoagulants in Non-valvular Atrial Fibrillation Patients: A Dose Subgroup Analysis of the ARISTOPHANES Study

Friday, October 26, 2018

Lip GYH1, Keshishian A2, Li X3, Hamilton M3, Masseria C4, Dhamane A3, Luo X5, Mardekian J4, Friend K3, Nadkarni A3, Pan X6, Baser O7, Deitelzweig S8

1. Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; 2. STATinMED Research, Ann Arbor, MI, USA; 3. Bristol-Myers Squibb Company, Lawrenceville, NJ, USA; 4. Pfizer, Inc., New York, NY, USA; 5. Pfizer, Inc., Groton, CT, USA; 6. Bristol-Myers Squibb Company, Wallingford, CT, USA; 7. Columbia University, New York, NY, USA; 8. Ochsner Clinic Foundation, Department of Hospital Medicine, New Orleans, LA, USA and The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA.

Purpose
This subgroup analysis of the ARISTOPHANES (Anticoagulants for Reduction In STroke: Observational Pooled analysis on Health outcomes AND Experience of patients) study aimed to use multiple data sources to compare S/SE, MB, and their respective components among non-valvular atrial fibrillation (NVAF) patients prescribed NOACs stratified by index dosage.

Methods
A retrospective observational study of NVAF patients initiating apixaban, dabigatran, rivaroxaban, or warfarin from 01/01/2013-09/30/2015 was conducted using CMS Medicare data and four other US commercial claims databases, covering >180 million beneficiaries annually (~56% of US population). After propensity score matching (PSM) in each database between standard-dose NOACs (5mg BID apixaban-150mg BID dabigatran, 5mg BID apixaban-20mg QD rivaroxaban, and 150mg BID dabigatran-20mg QD rivaroxaban) and lower-dose NOACs (2.5mg BID apixaban-75mg BID dabigatran, 2.5mg BID apixaban-10 or 15mg QD rivaroxaban, and 75mg BID dabigatran-10 or 15mg QD rivaroxaban), the resulting patient records were pooled. Cox models were used to estimate hazard ratios of S/SE and MB (identified by inpatient claims). S/SE included ischemic stroke, hemorrhagic stroke, and SE; MB included gastrointestinal (GI) bleeding, intracranial hemorrhage (ICH), and other MB.

Results
Patients initiating lower- and standard-dose NOACs had different baseline characteristics, including age and renal disease. Standard-dose apixaban patients had a similar rate of S/SE but a lower rate of MB versus standard-dose dabigatran; lower-dose apixaban patients had a lower rate of S/SE and MB versus lower-dose dabigatran. In both standard and lower dose analyses, apixaban was associated with a lower rate of S/SE and MB compared to rivaroxaban. Compared to standard-dose rivaroxaban, standard-dose dabigatran was associated with a similar rate of S/SE and lower rate of MB. Lower-dose dabigatran was associated with a higher rate of S/SE and similar rate of MB compared to lower-dose rivaroxaban.
Conclusions
Among NVAF patients, both standard- and lower-dose apixaban patients had lower rates of MB compared to corresponding doses of dabigatran and rivaroxaban, respectively; both doses of apixaban also demonstrated lower rates of S/SE versus corresponding doses of rivaroxaban, respectively. The comparisons between dabigatran and rivaroxaban showed varying results for S/SE and MB across dosage levels. Dose selection criteria cannot be ascertained from the current data sources. Future studies of patients who were appropriately dosed are warranted.