Endothelin-1 Gene Polymorphisms in Severe Pulmonary Hypertension associated with Rheumatic Mitral Stenosis
Pratishtha Mehra, Vimal Mehta, Jamal Yusuf, Saibal Mukhopadhyay, Sanjay Tyagi
G. B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India

Introduction
- Rheumatic heart disease results from damage to heart valves caused by a single or recurrent episodes of rheumatic fever. It is endemic in developing countries including India.
- It has a worldwide prevalence of 33 million, resulting in about 3.5 million deaths worldwide annually.
- Mitral valve is most commonly involved and pulmonary hypertension (WHO group II) is a common sequelae of rheumatic mitral valve disease.
- Endothelin-1 (EDN1) is a potent vasoconstrictor with mitogenic and angiogenic properties and has a crucial role in the pathophysiology of idiopathic pulmonary arterial hypertension (WHO group I).
- Studies have shown that genetics plays a major role in the pathogenesis of idiopathic pulmonary arterial hypertension (WHO group I) and formed the basis for drug therapy with Endothelin receptor antagonists.
- However, the influence of genetics on pulmonary hypertension associated with mitral valve disease (WHO group II) is yet to be determined.
- The genetic variants of EDN1 may be involved in the pathophysiology of pulmonary hypertension associated with rheumatic mitral stenosis, and hence we sought to study the role of endothelin-1 gene polymorphisms in its pathophysiology.

Methods
- A total of 246 subjects were enrolled in the study comprising of 2 groups:
 - Group A: 123 consecutive cases of Pulmonary Hypertension (PH) associated with isolated chronic rheumatic mitral stenosis
 - Group B: 123 age and sex matched healthy controls
- All patients were enrolled over a period of 2 years from outpatient department of G.B. Pant Institute of Postgraduate Medical Education and Research, New Delhi.
- Demographics, history, clinical exam and detailed echocardiography exam done.
- Blood was collected for hemogram, anti-streptolysin O titre (ASO), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), endothelin levels (by ELISA) and anticoagulated blood sample for DNA analysis.
- DNA was extracted from peripheral blood leukocytes and genotyping was performed by PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism). Allelic and genotypic frequencies estimated in patient and control groups by appropriate statistical tests.

Results
- The mean right ventricular systolic pressure was 70.26±24.11 mm Hg and mean pulmonary end diastolic pressure was 25.96±10.29 mm Hg suggesting severe pulmonary hypertension.
- Lys198Asn polymorphism: Genotype Lys/Lys was present in 19.5% in Group A and 31.7% in Group B (p=0.04), genotype Lys/Asn was present in 61% in Group A and 60.2% in Group B (p=1), genotype Asn/Asn was present in 19.5% in Group A and 8.1% in Group B (p=0.02).
- The frequency of Asn/Asn homozygous was significantly higher in Group A suggestive of association of Lys198Asn polymorphism with pulmonary hypertension associated with rheumatic mitral valve disease.

Conclusions
- Endothelin-1 gene polymorphisms appear to play a significant role in the pathophysiology of pulmonary hypertension associated with rheumatic mitral valve disease.

References