Cardiometabolic Chronicle

Delivering the Latest

developments in cardiometabolic health


New Guidelines: Addressing Practical Challenges in Heart Failure Care

New Guidelines: Addressing Practical Challenges in Heart Failure Care

Statistics indicate that approximately 6.5 million people in the United States are diagnosed with heart failure (HF), an uptick from 5.7 million in only a few years—leading to a multitude of risk factors often associated with cardiometabolic syndrome.1 These factors include—but are not limited to—obesity, increased blood pressure, a predisposition towards diabetes, abnormal cholesterol levels, and hypercoagulability. In turn, the aforementioned risk factors lead to significantly increased mortality, primarily due to heart attack, stroke, congestive HF, and chronic kidney disease. As the global obesity epidemic continues to plague the population, there will be an inevitable increase in the epidemiology of HF. As a result, new guidelines reflecting the latest evidence-based treatment strategies and recommendations have recently been released to aid clinicians in optimizing HF care.
The big picture
The prevalence of HF is currently estimated at 6 million people in the United States, and is projected to increase by 46% and affect more than 8 million by 2030.1 Heart failure has enormous monetary impacts on the economy; each patient’s hospitalization cost is $23,077, and annual costs for HF patients will likely exceed $31 billion dollars.1 Moreover, studies confirm that almost a quarter of all HF patients are readmitted to the hospital within 30 days of discharge; nearly half are hospitalized 4 or more times, and these patients are also often cognitively impaired—furthering the risks of hospitalization and readmission.1,2 Further data indicates that 11% of HF patients die within 30 days of hospital discharge, and about 50% die within 5 years of diagnosis.1 The fact that hospital readmission rates for HF are extremely high has become an increasingly serious public health issue, even monitored by the Centers for Medicare & Medicaid Services as part of an initiative to lessen readmission rates and impacts.3
The two most common subsets of HF are patients with reduced ejection fraction (HFrEF), and patients with preserved ejection fraction (HFpEF). Among patients diagnosed with HF, around 50% have a preserved ejection fraction (HFpEF), a condition that has become both more prevalent and challenging to diagnose.4 Although there are distinctive myocardial structural and primary functional derangements in HFrEF, clinical presentations and prognosis are similar to HFpEF.4 Diagnosing the correct subset of HF is perhaps further complicated by the lack of agreement about classification of left ventricular ejection fraction (LVEF). Reduced ejection fraction is variably classified (as ≤35%, <40%, and ≤40%), and the same goes for preserved ejection fraction (classified as >40%, >45%, >50% and ≥55%); and new studies suggest that there is even a new phenotype defined as heart failure with midrange ejection fraction (40-49%).4 This adds to the complexity of HF management, since patients with HFrEF respond well to established pharmacotherapies, but the same is not true for patients with HFpEF.4
Due to the high prevalence of HF in the US and coexisting conditions, such as diabetes, chronic respiratory conditions, renal dysfunction, or peripheral vascular disease, HF patients are often managed and treated by health care providers from multiple disciplines, including primary care physicians, internists, family medicine physicians, cardiologists, and endocrinologists. Due to the rapidly increasing prevalence of HF, coupled with its economic burden and strong correlation to cardiometabolic syndrome, it is critical for clinicians to stay current surrounding guidelines, newly emerging pharmacotherapies, and coordination of care strategies that collectively enhance and optimize patient outcomes.
New guidelines
Due to new evidence and treatment protocols, the “2013 ACCF/AHA Guideline for the Management of Heart Failure” was updated in 2017 through a partnership between the Heart Failure Society of America, the American College of Cardiology, and the American Heart Association. The update represented the second of a two-stage publication with the 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for heart Failure, and includes revisions to sections concerning biomarkers, the introduction of new therapies for HFrEF, updates on HFpEF, newly updated data surrounding critical comorbidities including sleep apnea and anemia, and further insights into the potential prevention of HF.5,6,7 More recently, in order to complement and supplement the 2017 ACC/AHA/HFSA Focused Update of the 2013 ACC/AHA Guideline for the Management of Heart Failure, the American College of Cardiology has released new guidelines that address new medical therapies, prevention protocols, and relevant comorbidities—while outlining management of HFrEF with specific considerations for certain groups.8
The 2017 update suggested the use of natriuretic peptide biomarker-based screening, followed by team-based care including a cardiovascular specialist. The optimization of guideline-directed management and therapy (GDMT) was found to be effective in preventing not only the development of Left Ventricular (LV) dysfunction—both systolic and diastolic—but also the onset of new HF.6 Other findings confirmed that for the pharmacologic treatment of Stage C HFpEF, the application of aldosterone receptor antagonists should be considered. Additionally, for patients with New York Heart Association (NYHA) class II and III HF accompanied by comorbid iron deficiency anemia, the use of intravenous iron replacement could ultimately prove successful.6
The 2017 update further emphasized goals and recommendations for the management of blood pressure, for patients at risk of HF development, and those with both stage C HFrEF with hypertension and HFpEF with hypertension. The focused update also incorporated new data regarding patients with NYHA class II-IV HF, and the potential of sleep disordered breathing or excessive daytime sleepiness. The verbiage emphasized the importance of diagnosing obstructive versus central sleep apnea, coupled with new data that further highlighted HF prevention, management of hypertension, and the treatment of other common comorbid conditions.6
The most recent document outlined ten specific areas of interest to HF clinicians, including how to address challenges of care coordination, improve adherence to therapies, and ways in which to manage both the cost and complexity of HF.8 The newly revised guidelines also discuss the integration of palliative care, and transition to hospice care, among patients with HF.8 In addition, these guidelines address specific population cohorts at higher risk for HF (such as the elderly, the frail, and African Americans) and patients with common comorbidities, including cardiometabolic risk factors. One of the hallmark traits of this new document is its direct application of HF guidelines to the clinic, due to the clinical practice gaps that clinicians face in the prevention, diagnosis, and treatment of HF.8

As new therapies and diagnostics for HF become available, guidelines for the management of the disease continue to evolve, with the goal of bridging the clinical practice gaps and complexities of HF care. An increasing realization surrounding the critical comorbidities also allows clinicians to better address HF, and evolving updated guidelines and documents continue to address the critical reality and need for prevention. With specifically outlined clinical practice gaps and recommendations for improvement, the updated guidelines are an added tool for the healthcare professionals to more effectively treat the global epidemic of heart failure. However, as the experts conclude, “no guideline, pathway, or algorithm should supersede clinical judgement”, and clinicians should choose the appropriate therapies based on patient preferences and clinical presentation.8


    1. Benjamin, Emelia J., et al. "Heart disease and stroke statistics—2017 update: a report from the American Heart Association." Circulation 135.10 (2017): e146-e603.
    2. Wong CY, Chaudhry SI, Desai MM, et al. Trends in comorbidity, disability, and polypharmacy in heart failure. Am J Med. 2011;124(2):136.
    3. Fonarow, Gregg C., Marvin A. Konstam, and Clyde W. Yancy. "The Hospital Readmission Reduction Program Is Associated With Fewer Readmissions, More Deaths: Time to Reconsider." (2017): 1931-1934.
    4. Ponikowski, Piotr, et al. "2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC." European heart journal37.27 (2016): 2129-2200.
    5. Yancy CW, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-e239.
    6. Yancy, Clyde W., et al. "2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America."Journal of cardiac failure23.8 (2017): 628-651.
    7. Yancy, Clyde W., et al. "2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: an update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America."Journal of Cardiac Failure22.9 (2016): 659-669.
    8. Yancy, Clyde W., et al. "2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction."Journal of the American College of Cardiology(2017): 24465.


    October 2019 | Vol. 2 Q4