Cardiometabolic Chronicle

The Spectrum of Cardiovascular Prevention: Obesity Paradox, Physical Activity, Sedentary Behaviors and Emerging Therapeutics in Type 2 Diabetes Mellitus

However, there are also very cheap and practical ways to assess adiposity, particularly its distribution, in addition to BMI. For example, in our clinical practice here in Richmond, we always do an assessment of waist circumference in addition to BMI and BIA when available. Measuring waist circumference is very easy to do and is a good assessment of visceral adiposity, which is considered to be a strong cardiometabolic risk factor. So, in addition to just keeping track of changes in BMI, we also always keep track of the changes in waist circumference. For example, if you have an individual with a BMI of 23 kg/m2 and without any cardiovascular disease, but with a waist circumference of 104 cm (cut-off for men is <102 cm and for women <88cm), that individual would be considered to have an increased cardiometabolic risk despite having a normal BMI and no other apparent red flags. Overall, BMI is a decent tool, but we can do better, and there are definitely other practical tools that we can use.

CARDIOMETABOLIC CHRONICLE: In your research, you have also looked at physical activity and cardiovascular health. What levels of exercise intensity or duration are beneficial?

REFERENCES:
  1. 1. Ortega, Francisco B., Carl J. Lavie, and Steven N. Blair. “Obesity and cardiovascular disease.” Circulation Research 118.11 (2016): 1752-1770.
  2. 2. Carbone, Salvatore, et al. “Obesity paradox in cardiovascular disease: where do we stand?.” Vascular Health and Risk Management 15 (2019): 89 - 100.
  3. 3. Carbone, Salvatore, Carl J. Lavie, and Ross Arena. “Obesity and heart failure: focus on the obesity paradox.” Mayo Clinic Proceedings 92.2 (2017): 266 – 279.
  4. 4. Horwich, Tamara B., et al. “The relationship between obesity and mortality in patients with heart failure.” Journal of the American College of Cardiology 38.3 (2001): 789-795.
  5. 5. Padwal, R., et al. “The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data.” International Journal of Obesity 38.8 (2014): 1110 - 1114.
  6. 6. Romero-Corral, Abel, et al. “Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies.” The Lancet 368.9536 CLINICAL CONVERSATIONS 26 www.cardiometabolichealth.org (2006): 666-678.
  7. 7. Lavie, Carl J., et al. “Healthy weight and obesity prevention: JACC Health Promotion Series.” Journal of the American College of Cardiology 72.13 (2018): 1506 - 1531.
  8. 8. Carbone, Salvatore, et al. “Obesity, body composition and cardiorespiratory fitness in heart failure with preserved ejection fraction.” Future Cardiology 13.5 (2017): 451-463.
  9. 9. Carbone, Salvatore, et al. “Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity and cachexia.” Current Problems in Cardiology (2019).
  10. 10. Ortega, Francisco B., et al. “Body mass index, the most widely used but also widely criticized index: would a criterion standard measure of total body fat be a better predictor of cardiovascular disease mortality?.” Mayo Clinic Proceedings. 91.4 (2016): 443 - 455.
  11. 11. Piercy, Katrina L., and Richard P. Troiano. “Physical activity guidelines for Americans from the US Department of Health and Human Services: cardiovascular benefits and recommendations.” Circulation: Cardiovascular Quality and Outcomes 11.11 (2018): e005263, also available at https:// health.gov/paguidelines/second-edition/pdf/ Physical_Activity_Guidelines_2nd_edition.pdf
  12. 12. Fletcher, Gerald F., et al. “Promoting physical activity and exercise: JACC health promotion series.” Journal of the American College of Cardiology 72.14 (2018): 1622-1639.
  13. 13. Stamatakis, Emmanuel, et al. “Sitting time, physical activity, and risk of mortality in adults.” Journal of the American College of Cardiology 73.16 (2019): 2062-2072.
  14. 14. Lavie, Carl J., et al. “Sedentary behavior, exercise, and cardiovascular health.” Circulation Research 124.5 (2019): 799-815.
  15. 15. Lee, I-Min, et al. “Association of Step Volume and Intensity With All-Cause Mortality in Older Women.” JAMA Internal Medicine (2019).
  16. 16. Arnett, Donna K., et al. “2019 ACC/AHA guideline on the primary prevention of cardiovascular disease.” Journal of the American College of Cardiology (2019): 26029.
  17. 17. UK Prospective Diabetes Study (UKPDS) Group. “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).” The Lancet 352.9131 (1998): 837-853.
  18. 18. Zinman, Bernard, et al. “Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.” New England Journal of Medicine 373.22 (2015): 2117-2128.
  19. 19. Neal, Bruce, et al. “Canagliflozin and cardiovascular and renal events in type 2 diabetes.” New England Journal of Medicine 377.7 (2017): 644-657.
  20. 20. Wiviott, Stephen D., et al. “Dapagliflozin and cardiovascular outcomes in type 2 diabetes.” New England Journal of Medicine 380.4 (2019): 347- 357.
  21. 21. Perkovic, Vlado, et al. “Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.” New England Journal of Medicine 380.24 (2019): 2295-2306.
  22. 22. Marso, Steven P., et al. “Liraglutide and cardiovascular outcomes in type 2 diabetes.” New England Journal of Medicine 375.4 (2016): 311-322.
  23. 23. Marso, Steven P., et al. “Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.” New England Journal of Medicine 375.19 (2016): 1834-1844.
  24. 24. Hernandez, Adrian F., et al. “Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.” The Lancet 392.10157 (2018): 1519-1529.
  25. 25. American Diabetes Association. “9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019.” Diabetes Care 42.Supplement 1 (2019): S90-S102.
  26. 26. Carbone, Salvatore, et al. “Glucose-lowering therapies for cardiovascular risk reduction in type 2 diabetes mellitus: State-of-the-Art Review.” Mayo Clinic Proceedings 93.18 (2018): 1629 – 1647.

Subscribe

Sign up to receive updates on educational opportunities, complimentary content, exclusive discounts, and more.